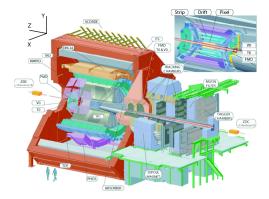
Performance study for the absorber of the muon spectrometer in the ALICE experiment

Mathieu GEMARD

Université de Nantes, Master 2 MARS

9 july 2013

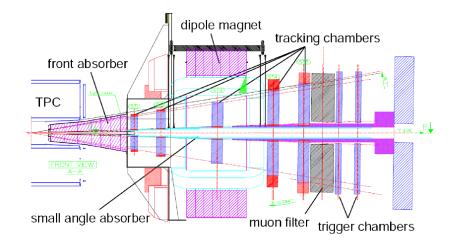

Responsable de stage: Ginés MARTINEZ GARCIA, Subatech, Nantes

(日) (四) (문) (문) (문) (문)

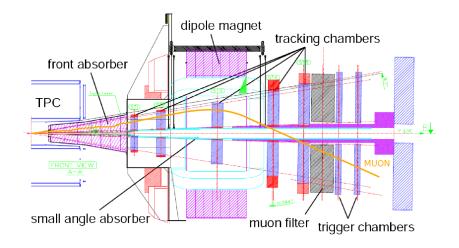
- 1. ALICE
- 2. pDCA
- 3. Occupancy rate

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

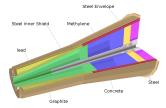
The ALICE experiment

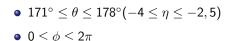

PbPb at \sqrt{s} = 2.76 TeV, centrality 0%-10%.

8000 part/ev/ η estimed in 1990.

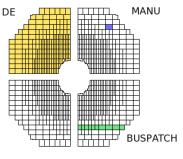

1600 part/ev/ η mesured nowadays.

pp at $\sqrt{s}=7$ TeV. pPb at $\sqrt{s}=5.2$ TeV.


The muons spectrometer



The muons spectrometer

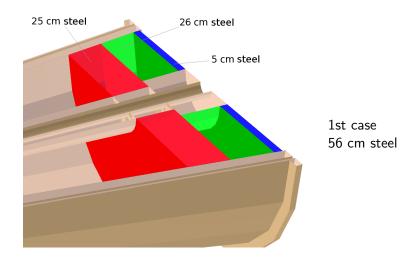


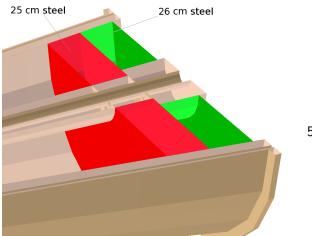
The absorber and the tracking chambers

Trajectography chamber 1

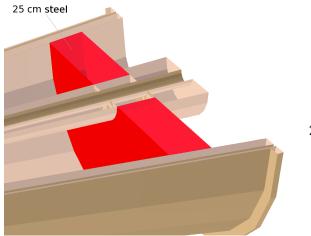
Muon Forward Tracker

Projet under study since 2009, possible upgrade of the spectrometer in 2018.

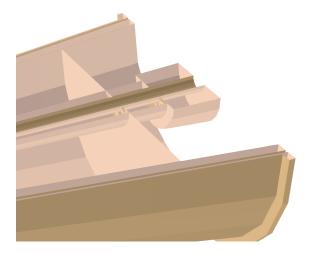

Motivation


- Better determination of muons vertex.
- Higher resolution of the J/ ψ mass spectra.

Drawback: energy loss.

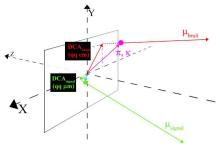


 Improvment in the p_T cut for the observation of vectors mesons ρ, ω, φ and φ.

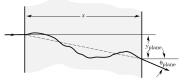


2nd case 51 cm steel

3rd case 25 cm steel

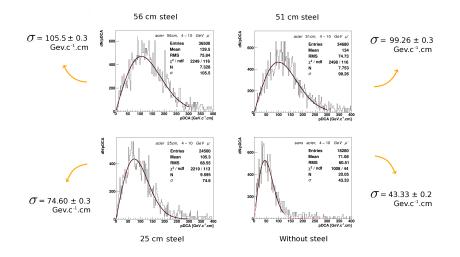


4th case Without steel


Distance closest approach

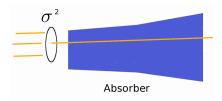
Goal: reject background tracks.

DCA: Distance between the real and the reconstructed vertex in the plane xy



Gaussian distribution of $\theta_{\it plane}$ with $\sigma_{\theta_{\it plane}} \propto 1/p$

We will use the p×DCA $P(pD) \simeq N.r.exp(-\frac{r^2}{2\sigma^2})$ avec $r = \sqrt{DCA_x^2 + DCA_y^2}$

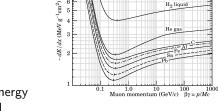

Modification of the muons spectrometer absorber in ALICE, Mathieu Gemard

pDCA distribution - simulation of μ^- from 4 to 10 GeV

 σ^2 describe a surface where the particule is seen before the absorber.

Square of the pDCA FWHM.

Configuration	$(\sigma_{modif}/\sigma_{current})^2$
51 cm steel	0.88 ± 0.006
25 cm steel	0.5 ± 0.004
Without steel	0.17 ± 0.002


H₂ liquid He gas

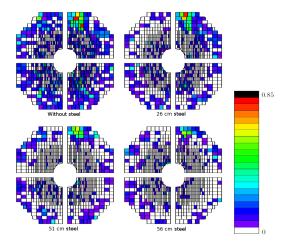
Energy loss

Energy loss in steel of muons from 10 to 100 GeV with Bethe formula.

Configuration	Energy loss	
56 cm steel	880 MeV	
51 cm steel	800 MeV	
25 cm steel	400 MeV	

Decrease of almost 1/4 of the muon energy loss through the absorber without steel.

3


The energy loss must be compared with the one from the MFT.

Hijing simulations

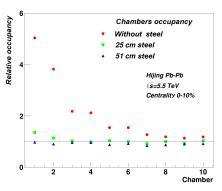
Hijing simulations PbPb \sqrt{s} = 5.5 TeV.

- Centrality 0-10%.
- Same kinematic for each event.
- 10 simulated events.

Occupancy rate in MANU

Occupancy rate of chambers, 10 events

Station	Chamber	56 cm	26 cm	Without steel
1	1	1.16e-2	1.56e-2	5.83e-2
	2	1.42e-2	1.62e-2	5.41e-2
2	3	2.09e-2	2.14e-2	4.55e-2
	4	1.99e-2	1.96e-2	4.21e-2
3	5	1.21e-2	1.25e-2	1.87e-2
	6	1.25e-2	1.25e-2	1.93e-2
4	7	0.931e-2	0.857e-2	1.18e-2
	8	0.967e-2	0.968e-2	1.15e-2
5	9	0.972e-2	0.897e-2	1.10e-2
	10	0.989e-2	1.02e-2	1.17e-2

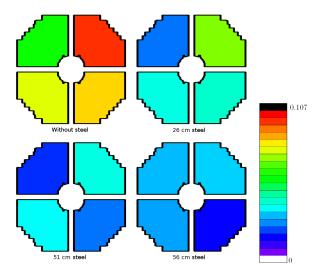

Current configuration, occupancy rate lower than 2%. In the case without steel, occupancy rate over 5%.

Relative occupancy rate of chambers

We introduce the relative occcupancy rate by:

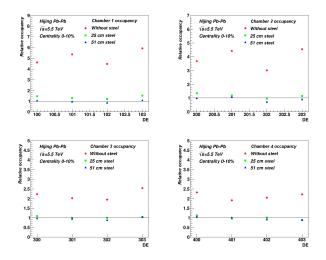
Simulated occupancy

Current occupancy



10 events

Importante increase of the occupancy rate in the case without steel.


Slight increase for the others configurations.

Occupancy rate in DE

Occupancy rate in DE, 10 events

Conclusion

- We have performed simulation of the muon spectrometer with a modified geometry of the absorber.
- We studied the improvement in the pDCA method: decrease of σ_{pDCA} by 40 $GeVc^{-1}cm$ (decrease of the surface by 2) in the case with 26 cm of steel and by 60 $GeVc^{-1}cm$ (decrease of the surface by 6) in the case without steel.
- Slight increase of the occupancy rate in the case with 25 cm of steel. Occupancy rate higher than 5% in the case without steel.
- It would make the study of vectors mesons easier with lower p_T cut and improvement of the invariant mass resolution.

 \Rightarrow Compromise to be reached and see if the removal of steel is technically feasible.